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ABSTRACT 

In this study, two methods of comparing the means of two samples were conducted. 
The first method used the traditional pooled variance t-test while the second method 
used the bootstrap method of comparing means. In the second method, pseudo 
sampling distributions were generated for the normal and non-normal distributions. 

For the non-normal we used the  
2

3χ  and a g=.5, h=.5 distribution. Group sizes {5, 15} 

and {15, 25} with equal and unequal variances were generated and for each method 
Type I error rates were evaluated. We found that about 20% and 33% of the study 
conditions using the pooled variance t-test were robust when group sizes are {5, 15} 
and {15, 25}, respectively. Whereas, about 33% and 47% of the study conditions in 
bootstrapped procedure were robust when group sizes are {5, 15} and {15, 25}, 

respectively.  
 

Keywords: t-test, Monte Carlo, bootstrap, Type I error 

 

 

INTRODUCTION 

The traditional t-test is usually affected by nonnormality and variance 
heterogeneity. Departures from normality originate from two problems, that 

is, skewness and the existence of outliers. These problems can be remedied 

by using transformations such as exponential and logarithm but sometimes, 
even after the transformation, problems with nonnormal data still occur.  

Simple transformations of the data such as the logarithm can reduce 

skewness but not for complex transformations such as those in the the class 
of Box-Cox transformations (Wilcox & Keselman, 2003).   
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The recent study of Teh and Othman (2009) showed when the pooled 

variance t-test Type I error rates get closer to the nominal value of 0.05 and 

when they are not. Their findings indicate that unbalanced groups with small 
sample sizes and slight departure from variance homogeneity produced 

liberal or conservative Type I error rates. For unbalanced groups of large 

sample sizes, the test was considered not robust based on the criterion used 

when there is a slight departure from variance homogeneity, regardless of 
distributions. Their findings also showed that when the distribution was non-

normal, Type I error of pooled variance t-test of 0.05 was not achievable 

when one of the group variance is larger than the other by about 10 units. 
 

Another problem which researchers always encounter when using the 

classical methods is heteroscedasticity. Some of the parametric methods that 
can handle this problem are those proposed by James (1951), Welch (1951), 

and Alexander and Govern (1994). Unfortunately, all of these methods have 

difficulty in dealing with nonnormal data.  Therefore, one way deal with the 
non-normalily problem is to use trimmed mean as the central tendency 

measure (Abdullah, et al., 2008).  

 
Some researchers sought for alternatives in the non-parametric 

methods, such as the Mann Whitney. However, these methods have low 

power (Wilcox, 1992). Even though the Mann Whitney test is distribution 
free, the distribution is assumed  to be symmetric.   

 

Another alternative is to use a Monte Carlo approach to deal with the 
problems of nonnormality and heteroscedasticity. The bootstrapped version 

of the test of difference between two group means was applied to evaluate 

the performance of a test procedure in terms of Type I error. Even with the 
bootstrap version of the existing methods stated earlier, the test statistic need 

to be defined. There is a simpler version of bootstrap test of difference 

between the two groups means which was introduced by Efron and 
Tibshirani (1993, p. 202). The reasons  for using this simpler version are 

because it does not require any test statistic and it deals with differences 

between samples from a single population. Thus, the bootstrap scheme 
involves pooling the two samples together. Essentially, this action ensures 

that we are bootstrapping over a homogeneous variance situation.  

 
In this study, our aim is to examine whether these two procedures, 

which are handicapped to work when the homogeneity of variance condition 

exists, will work effectively when the data are nonnormal, and group 
variances and sizes are unequal.  
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DESIGN SPECIFICATIONS AND METHODS 

To evaluate the performance of the test procedures, two variables 

were manipulated. They were: (1) the type of distribution – normal or non-

normal and (2) the nature of pairing of variances. We used unequal group 
sizes (5, 15) and (15, 25) with total sample sizes of the two groups being N = 

20 and 40. For nonnormal distributions, we chose the chi-square distribution 

with three degrees of freedom (
2

3χ ) to represent a mild skewness distribution 

and a g=.5, h=.5 (Hoaglin, 1985) distribution which is extremely skewed and 

heavy tailed. These two distributions were widely studied by researchers 
(Keselman, et al., 2007; Othman, et al., 2004; Syed Yahaya, et al., 2004). In 

terms of variance heterogeneity, the ratios of 1:9 and 1:36 are used in this 

study. They are considered  extreme variance conditions under which the 

efficacy of the tests should be examined (Alexander & Govern, 1994; 
Keselman, et al., 2007; Neuhäuser & Hothorn, 2000). 

 

Unequal group sizes, when paired with unequal variances, can affect 
Type I error control for tests that compare the typical score across groups 

(Keselman, et al., 1998; Keselman, et al., 2002; Othman, et al., 2004; Syed 

Yahaya, et al., 2006). Therefore, we positively and negatively paired the 
sample sizes and variances. A positive pairing occurs when the largest group 

size is associated with the largest group variance, while the smallest group 

size is associated with the smallest group variance. On the other hand, in a 

negative pairing, the largest group size is paired with the smallest group 
variance and the smallest group size is paired with the largest group variance.  

 

This study was based on simulated data. In terms of data generation, 
we used the SAS generator RANDGEN (SAS Institute, 2004) to obtain 

pseudo-random standard normal variates (RANDGEN(Y, ‘NORMAL’)) and 

to generate the chi-squared variates with three degrees of freedom we used 

RANDGEN(Y, ‘CHISQUARE’, 3). 
 

To generate data from a g and h distribution, standard normal random 

numbers Z were converted to g and h distributed random numbers via  
2

2
1

hZgZ
e

Y e
g

−
=                                                                  (1) 

  

where both g and h are non-zero. The Z values were generated using the 
generator RANDGEN with the normal distribution option.  
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We then compared the performance of the traditional pooled variance 

t-test with the bootstrap procedure of difference between sample means. Here, 

the group means are set to {0, 0} as to reflect the null hypothesis of equal 

means (H0: 1 2µ = µ ). The study conditions that we considered are as follows: 

 

 Group variances: {1, 1}, {1, 9}, {1,36}, {9, 1}, {36,1}  
 Group sample sizes: {5, 15}, {15, 25} 

Distribution: Normal, Chi-square with 3 degree of freedom (
2

3χ ) and 

g=.5, h=.5. 

 

The design specifications are presented in Table 1. 
 

Based on these conditions there are 3 distributions ×  5 design 

specifications or 15 Monte Carlo studies for both methods (refer to Table 1). 
For each condition examined, 1000 bootstrap samples were obtained. The 

nominal level of significance was set at α=0.05.         
 

TABLE 1: Design specification for two groups 

 

Pairing 
Group Sizes 

Population 

Variances 

1 2 1 2 

Negative  

5 15 
9 1 

15 25 

5 15 
36 1 

15 25 

Equal 
5 15 

1 1 
15 25 

Positive 

5 15 
1 9 

15 25 

5 15 
1 36 

15 25 

 

 

MONTE CARLO STUDY ALGORITHM 

The  algorithm of the Monte Carlo study of Type I error rates of the 
traditional pooled variance t-test is given as Algorithm 1. The algorithm to 

obtain the p-value of the bootstrap method of comparing two means is given 

as Algorithm 2. In order to carry out a Monte Carlo study of Type I error 
rates of the bootstrap method of comparing two means, we replace the 

pooled variance t-test steps in Algorithm 1 with the all of the steps in 

Algorithm 2.  
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Algorithm 1 

The algorithm for getting the Type I error rates of the traditional pooled 
variance t-test procedure is as follows: 

 

1) Initialize a variable, count = 0  
2) Generate data to reflect the null hypothesis of equal mean is true.  

3) Calculate t-test statistic based on data generated in step 2. 

4) Determine p-value of calculated t-test statistic in step 3. 
5) If p-value ≤ 0.05, then increase count by one (count = count + 1).  

5) Repeat steps 2 to step 5 for 1000 times. 

6) Obtain the average Type I error rates by dividing count by 1000. 
7) Repeat this simulation for 15 different conditions (3 distributions ×  

5 design specifications). 

 
The following algorithm is used to determine the p-values of the 

bootstrap procedure of differences between two means. 
 

Algorithm 2 

These are the steps used to get the p-values of the bootstrap method. 

 

1) Based on the two samples, calculate ˆ X Yθ = − . 

2) Pool the sample points from both samples. We can do so because in 

H0: F = G  where  F and G are the population distributions of 

samples X and Y, respectively. 
3) Let n1 and n2  be the sample sizes of the two samples and n1+ n2 = N. 

 Draw randomly with replacement from this pool n1 sample 

 points.  This will be x1
*
. The remainder N-n1 will form y1

*
. 

4) From step 3, obtain * * *

1 1 1
ˆ X Yθ = − . 

5) Repeat step 3 and step 4 for 1000 times.  

6) Obtain the Type I error rate of the test by calculating the number of 

ˆ ˆ*

b
θ θ≥  and then dividing by 1000 where b =1, 2, …, 1000. 

 

As mentioned earlier, in order to do the Monte Carlo study of Type I error 
rates of the replace steps 3 to 6 in Algorithm 1 with steps 1 to 6 in Algorithm 

2.                                  
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RESULTS AND DISCUSSIONS 

Table 2 and Table 3 show the Type I error rates of the t-test and 

bootstrap method, respectively, when group sizes are {5,15} or N=20. Table 
4 and Table 5 show the Type I error rates of the two methods when group 

sizes are {15, 25} or N=40.    
 

According to Bradley’s (1978) liberal criterion of robustness, a test 

can be considered robust if its empirical rate of Type I error, α̂ , is within the 

interval ˆ0.5 1.5 α α α≤ ≤ . Thus, if the nominal level is  α = 0.05, the 

empirical Type I error rate should be within the interval ˆ0.025 0.075α≤ ≤ .  
 

TABLE 2: Type I error rates of two sample t-test with pooled variance  

when group sizes {5, 15}. 

 

Distribution 
Group Variances 

(1, 9) (1,36) (1, 1) (9, 1) (36,1) 

Normal 0.003 0.001 0.043* 0.209 0.274 

2
3χ  0.021 0.014 0.049 0.240 0.314 

g=0.5, h=0.5 0.010 0.007 0.047 0.175 0.254 

Note: *Bold values indicate Type I error within ˆ0.025 0.075α≤ ≤ . 
 

TABLE 3: Type I error rates of the bootstrapped comparison of mean when group sizes {5, 15}. 

 

Distribution 
Group Variances 

(1, 9) (1,36) (1, 1) (9, 1) (36,1) 

Normal 0.006 0.003 0.059 0.159 0.186 

2
3χ  0.031 0.033 0.072 0.112 0.129 

g=0.5, h=0.5 0.018 0.008 0.061 0.143 0.178 

Note: *Bold values indicate Type I error within ˆ0.025 0.075α≤ ≤ . 

 
TABLE 4: Type I error rates of two sample t-test with pooled variance when group sizes {15,  25} 

 

Distribution 
Group Variances 

(1, 9) (1,36) (1, 1) (9, 1) (36,1) 

Normal 0.011 0.009 0.049 0.110 0.115 

2
3χ  0.025 0.023 0.043 0.132 0.152 

g=0.5, h=0.5 0.014 0.014 0.033 0.074 0.102 

Note: *Bold values indicate Type I error within ˆ0.025 0.075α≤ ≤ . 

 

TABLE 5: Type I error rates of the bootstrapped comparison of mean when group sizes {15, 25}. 

 

Distribution 
Group Variances 

(1, 9) (1,36) (1, 1) (9, 1) (36,1) 

Normal 0.017 0.014 0.052 0.083 0.095 

2
3χ  0.044 0.045 0.045 0.059 0.062 

g=0.5, h=0.5 0.017 0.012 0.045 0.090 0.137 

Note: *Bold values indicate Type I error within ˆ0.025 0.075α≤ ≤ . 
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Based on this criterion of robustness, about 20% (3 out of 15) and 

33% (5 out of 15)  of the study conditions using the t-test are robust when N 

= 20 and N = 40, respectively. Whereas, there are about 33% (5 out of 15) 

and 47% (7 out of 15) of the study conditions using the bootstrap method are 

considered robust when N =20 and N = 40, respectively.  
 

In both methods, samples with equal variances have p-values that are 

within the Bradley’s (1978) liberal criterion of robustness. However, the 

values nearest to the nominal level ( 0.05)=α  are from the two sample t-test 

with pooled variance when the distribution is normal. 

 
For the t-test method, current results reveal that positive pairings have 

conservative results and negative pairings have liberal results. This is in 

accord with findings in Othman, et al. (2004), and Teh and Othman (2009), 
that positive pairings produced conservative values, while negative pairings 

generated liberal values.  

 

In the bootstrap method, the 
2

3χ -distribution with positive pairing 

showed Type I error rates which are robust for group sizes {5, 15}. Whereas, 

the same distribution with group sizes {15, 25} showed Type I error rates 

which are robust for both negative and positive pairing. In other words, the 
p-values of these conditions are within Bradley’s (1978) liberal criterion of 

robustness. On the other hand, the Type I error rates of g=.5, h=.5 

distribution are not robust when group variances are unequal, for group sizes 
{5, 15} and {15, 25}. However, the error rate is closer to the nominal level 

compared to normal distribution when group sizes are {5, 15}. 

 
 

CONCLUSIONS 

When comparing two means, our study showed that the pooled 
variance t-test method is slightly better than the bootstrap method for the 

equal variance case. Whereas, for the unbalanced design (unequal sample 

sizes with unequal variances), the bootstrap method produced better Type I 
error rate than the pooled variance t-test method. Thus, when assumptions 

are untenable and sampling distribution of test statistics unknown, the Monte 

Carlo remedy, that is, the simple version of bootstrap (Efron & Tibshirani, 
1993) construction of the pseudo sampling distributions would enable us to 

conduct tests of hypotheses.  
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